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Orientation tuning and synchronization in the hypercolumn model
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The orientation selectivity in the firing rate of neurons is one of the most well-known properties of neurons
in the primary visual cortex. To understand the dynamical mechanism of the orientation tuning, we introduce
a biologically plausible network for a hypercolumn and investigate dynamical responses of its columnar
activities. Numerical simulations show that the spike activities between excitatory cells in the same column
exhibit strong synchronization and sharp orientation selectivity. The tuning curves for the synchronized activi-
ties also show orientation selectivity similar to those for the firing rate. The comparison between the two tuning
curves for the firing rate and the synchronized activities suggests that the orientation selectivity is strongly
correlated with the synchronized activities. We find from the analysis of columnar activities that the orientation
selectivity depends strongly upon the inhibitory coupling strength and the synchronization upon the excitatory
coupling strength. In particular, we find that at appropriate coupling parameters both sharp orientation selec-
tivity and maximal synchronization can be achieved. This suggests the importance of the balance between the
excitatory coupling and the inhibitory coupling in the primary visual cortex for visual information processing.

DOI: 10.1103/PhysRevE.69.011914 PACS nuniher87.19.La, 05.45.Xt, 05.16.a

[. INTRODUCTION the visual cortical system. Gragt al. have found stimulus-
dependent synchronization of neuronal responses and long-

So far, one of the most important questions regarding neu-ange synchronization of oscillatory responses in the visual
ral response properties in the primary visual cortex has beecortex[8], which depend on global stimulus properties such
how the neurons become selective to a visual stimulus orias size and continuity. This observation suggests that a sen-
entation[1,2]. In other words, this question is how the ori- sory part of the brain detects the objects by synchronization
entation selectivity emerges in the visual cortex in spite ofof neurons participating in the feature detection and temporal
weak orientation selectivity of neurons, if any, in the lateralcorrelation can be exploited to convey information relevant
geniculate nucleusLGN). Several models to address this to perceptual grouping. However, until now, little was under-
guestion have been proposed; however, the problem still restood about the mechanism underlying this type of synchro-
mains controversial. In the conceptual model proposed byization in connection with the intracortical connecti¢B%
Hubel and Wiesel3], the geniculocortical inputs are as- and the relationship between the synchronization and sharp
sumed to give the main contribution to the emergence obrientation tuning9] remains largely unknown.
orientation selectivity; that is, the cortical neurons obtain ori- Recently, simulations of dynamic neural network models
entation selectivity from the elongated patterns of converghave attracted much attention as an efficient research tool for
ing thalamic inputs. An alternative class of models calledunderstanding the orientation selectivity. The design of the
recurrent models has also been proposed by taking into acetwork structures is based on the experimental data and
count the role of intracortical connections. In the recurrentactive neuron models with the use of synaptic connections,
models, the orientation tuning of the membrane potentiako these models give more realistic understanding of neural
evoked by direct inputs from LGN is assumed to be broadsystems than conceptual models. A dynamic neural network
however, this weak tuning is sharpened by the strong intramodel for orientation selectivity was first proposed by Som-
cortical connections. These recurrent models can be dividedrs et al. [7]. They assumed that the visual cortex is com-
into two groups depending on the amount of contributions ofposed of columns, where the intracortical connections were
intracortical excitatory and inhibitory connectiorid—7]. determined by the angular difference of the preferred orien-
The role of the inhibitory connections is proposed to be mordations. They also paid attention to the importance of the
important for orientation selectivity in some inhibitory mod- firing rate averaged over all the excitatory cells within a col-
els [4,5] while excitatory connections are considered to beumn. The sharp orientation selectivity was observed in the
more relevant in other mode[$,7]. tuning curve of the ensemble-averaged firing rate. They,

An interesting feature of cortical dynamics is the synchro-however, did not explore the relationship between the orien-
nization in the response of neuro®, the understanding of tation selectivity and dynamical states such as synchroniza-
which is regarded as one of the most important problems iion in the neural activities. After the pioneering work of
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Somerset al. [7], many neuronal network models were pro- | | ‘ \ | \ ‘ \|\‘\|\‘_|/‘/|/‘ / | / ‘ / | | ‘
posed[9-11]. Hansel and Sompolinsky have studied the re-
lationship between the orientation selectivity and the dy- @)
namical phenomena of synchronization in the hypercolumn 1
model. They observed the synchronization in the autocorre-
lation and cross correlation functions of the cortical cell ac-
tivities when there is sharp orientation selectivity. However,
in their model the columnar structure was absent, so it is 0
hard to specify the collective activity of cells in the same 90 0 S 9%
column and synchronization between them. That is, the dy- (b)

namical properties of averaged neural activity for cells

(=]

within a column, which we caltolumnar activity have not

been investigated yet. Also, the relations between the orien-

tation selectivity and the dynamical properties of intercolum-

nar and intracolumnar neural activities remain unclear. Y4 Vo R P
In the present study, a hypercolumn model representing | i ; 1 T ] LI ; 5

one cycle of preferred orientations is constructed using a b é d’ %) ® 8 8 \ é O'

network of columns of Hodgkin-Huxley neurons with intra- — — =]

cortical short-range excitatory and long-range inhibitory con- ©

nections under visual stimulus currents. The tuning curves of

the flrlng rate in the model showed sharp orientation selec- FIG. 1. (a) The preferred orientation ar(th) the input stimulus
tivity with contrast invariance even though LGN inputs are amplitude. The preferred orientation for each column is represented
not tuned sharply. For the dynamical properties of neuraby the angle of each bar i@ and the input stimulus amplitude by
activities, firings of excitatory cells in the individual columns the height of each box itb). (c) The intracolumnar and intercolum-
are found to be synchronized and the power spectra of thear lateral connections. The pyramid-shaped figures represent pyra-
averaged firings of all the excitatory cells in each column aremidal cells, the circles inhibitory cells. The excitatory connection
localized around particular frequencies. The peak height ofrom a pyramidal cellgray) is represented by solid arrows and the
the power spectruniPHPS, which is calculated from the inhibitory connection from an inhibitory cellgray by dashed ar-
averaged firing activities within a column, and autocorrela-fows.

tion and cross correlation are introduced to quantify the de-

gree of synchronization. The PHPS as a function of stimulus A simple pattern of the intracortical connections is as-
orientation also shows sharp orientation selectivity as seen isumed in this model to be the short-range excitatory and
the firing rate, which indicates that the degree of synchronitong-range inhibitorysee Fig. 1c)], as observed in an ana-
zation of firings strongly depends upon the stimulus orientatomical study of the cortekl4]. In the model, the excitatory
tion. When the tuning properties for ensemble-averaged firconnections are all-to-all inside individual orientation col-
ing activities are investigated as a function of synapticumns or intercolumnar connections between the nearest-
parameters, we find that there exist appropriate values afeighbor columns. The strength of the intercolumnar connec-
intracortical connection strengths, which result in both tighttions is 15% of that of the intracolumnar connections. An
orientation tuning and strong synchronization of firings. In-inhibitory neuron is connected globally to the other neurons
terestingly, it is found that the excitatory coupling strength isin the whole networks. The model proposed here has short-
balanced with the inhibitory coupling strength in the appro-range excitatory and long-range inhibitory connections simi-

priate coupling strength. The overall properties of tuning ar@ar to the structure of connections in the model by Somers
found to be robust for a broad class of neuron models andt al.[7].

synaptic models. In Sec. I, a simple neural network model

of the hypercolumn is introduced. In Sec. Ill, we present the

results of numerical simulations on orientation selectivity A. Hodgkin-Huxley neurons

with our model. We end with a summary and discussions.  \ye adopt the Hodgkin-Huxley neuron as a model of ex-

citatory and inhibitory cells because it has served as a simple

and typical paradigm for tonically spiking neurons based on

the voltage-dependent nonlinear membrane conductances.
The network model composed of 15 columns is designed he Hodgkin-Huxley neuron model was originally derived

as a hypercolumn model as in Figal, where the preferred from the dynamical behavior of squid giant axons in 1952

orientation varies discretely from90° to +90° with an in-  [13] and is described by four ordinary differential equations

crement of 12.85°. The network consists of 225 cortical neuwith respect to four variableg, m, n, andh. The membrane

rons where 45 neurons are inhibitory ce{%) and 180 potential V; of the ith neuron in the network is given by

neurons excitatory cellé80%) [12]; each column contained Kirchhoff’s law of current conservation:

12 excitatory neurons and 3 inhibitory neurons. The model

cortical cells either excitatory or inhibitory are given by the ﬂ T I 1)

Hodgkin-Huxley(HH) neurong13]. dt ~ oni B syni + Inoisei »

II. MODELING A HYPERCOLUMN
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where C is the membrane capacitanck;; the external

stimulus current);,,; the ionic current through ion chan- |sym(t)=—Gex2k a(t=t; ) (Vi—Vey
nels, lsyni the synaptic current from the excitatory and in- g

hibitory cells in the columns, ant,,se; the noisy input

current. The voltage-dependent ionic current is the sum of —GthI a(t—t; )(Vi= Vi), )
currents through the sodium chann@&a), the potassium 3
channel K), and the leaky current): with the a function a(t)=(t/7)e” V" specified by the time

constant7. The maximum synaptic conductances and the
lion,i= —gnamh(V;— Vyna) — 9kn*(Vi— Vi) —g,(Vi— V), synaptic reversal potentials a&., andV,, for the excita-
(2)  tory synaptic current an;,, and Vi, for the inhibitory
synaptic currents, respectively. The occurrence time(or
whereg’s with subscriptdNa,K,| are the maximum conduc- tj,) represents th¢th spike in thekth (or Ith) presynaptic
tances for individual channels, aik are the corresponding €xcitatory neuron in théth inhibitory one. The summation is
reversal potentials. taken for all the events of action potentials and for all the
The time-varying gate variables, h, andn are associated presynaptic neurons. The time constantis chosen to be 2
with activation ofNa channels, inactivation dfla channels, msec for excitatory synapses and 5 msec for inhibitory syn-
and activation oK channels, respectively, and obey the fol- apses. We assume thsf,= —45 mV for excitatory syn-
lowing equation: apses and/;,,= —80 mV for inhibitory synapses with the
resting membrane potenti®l ;= —65 mV [15,16].
We employ the correlated noisy current with Ornstein-

d
TX(V)d_)t(:X“‘(V)_X' (3  Uhlenbeck(OU) process with the correlation tims, :
CIInoisei
Herex denotes each of the gate variables, apdndx., are gy noisei T V2DE(L), )

the relaxation time and stationary value of the gate variable,
respectively. A more detailed description of these parametenshere £(t) is the Gaussian white noise, aml the noise
can be obtained from the literatur#3,15,16 (see Appendix intensity. Here, we assume thafis 2 msed19].
A).
C. Peak height of the power spectrum

B. Stimulus currents Suppose that;; represents the occurrence time of fle

When the visual stimulus of a bar is presented with arsPike in theith neuron; then, the spike traim of the ith
orientation angled,, the stationary input current to a cell in neuron is given byn;=ZX;5(t—t;;). To characterize the in-
theith column through the geniculo-cortical afferent inputs formation processed by the excitatory cells in a column, we
is assumed to be a function d¥,— 6| as Ig;=F(|6; adopt the averaged spike trdi20,21] h=(1/N)X;h;, where
—6o]), where F(0) is a decreasing function of with a  the indexi spans all the excitatory cells in a column, axd
single maximum at= d,, andé; the preferred orientation of represents the number of excitatory cells in a column. The
the cell. For simplicity, we assumed a linearly decreasingaveraged spike train shows periodic and clustered spike ac-
function with a half width of 45° as in Fig.(Ih). This weakly tivities in the presence of synchronization, whereas it shows
tuned input current is adopted based on the experimental random and irregular sequence of spikes in the absence of
finding that the tuning profile of the membrane potentialsynchronization. When the cells show synchronized firings,
driven only by the LGN input was broad with a half width of the power spectrum of the firings is localized around particu-
about 45717]. Wheng,=0°, the input current is written by lar frequencies and the peak height is proportional to the

degree of synchronization. In practice, this power spectrum
|90°—| 6] is given as the Fourier transformation of the autocorrelation
lei :|OCTv (4) of the averaged spike train. When there occur oscillations by
the synchronized activities in the averaged spike train, we
can observe periodic peaks in the autocorrelation function.
where |4 is the maximum current for the column with  The period of oscillations is given by the inverse of the fre-
=0°, andc the stimulus contrast which takes a value be-quency around which the power is localized. The degree of
tween 0 and 1. The inhibitory cells are assumed to receivgynchronization of firings in a column is quantified in our
the same input current as the exqtatory ce]ls in the Sameyydy by the PHPS of the averaged spike tfaft) [21].
column. Here, we assume thit; is proportional to the
stimulus contrast for simplicity with | ;=11 uA/cm? for the
maximal stimulus contrast.

The synaptic currenitsy;(t) is typically modeled by the Orientation selectivity has been intensively investigated in
«a function[18], which characterizes a quick rise and a slowthe physiological experiments since the pioneering work by
decay of the post-synaptic potential induced by a spike fronHubel and Wiese(see, for example, Dd4] and Sompolin-

a presynaptic neuron. That is, the synaptic current is given bgky and Shapley2]). The firing rate of a simple excitatory

I1Il. NUMERICAL RESULTS
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(a) Orientation (deg)
60 , , , , , FIG. 3. The average orientation tuning curves obtained from our
network for various stimulus contrastsbetween 0.5 and 1.0. The
50 | . simulations were performed fds,,=0.05, G;,,=0.05, and weak
noiseD=1.

40 .

strength of the forcing amplitude, which indicates that con-
trast invariance is achieved as in neuronal responses in the
20}t i primary visual cortex.
We observe periodically clustered spikes in the averaged
10} . spike trains of the individual columns in Fig.(a& even
though the model cortical cells receive noisy current. We can
00 .60 30 0 30 80 90 also see in Fig. @) that the periodic structure of synchro-
Orientation (deg) nized firings becomes deteriorated as the preferred orienta-
(b) tion of the column departs from the stimulus orientation.
When we calculate the power spectrum of the spike train for
FIG. 2. () The averaged spike trains for individual columns of the column with preferred orientation 0°, it has a sharp peak
our hypercolumn model antb) the tuning curve of the average with broad background. As the preferred orientation of a col-
firing rate calculated from the averaged spike traingan These  ymn departs from the stimulus orientation, the PHPS de-
results were obtained for the synaptic coupling streng®s  creases without changes in the background level. We draw
=0.05,G;p=0.05, and weak noise with =1. the tuning curve of the PHPS against the preferred orienta-
, . . , . tion in Fig. 4. Interestingly, we observe in this tuning curve
cell is measured as a function of the stimulus orientation, ot the PHPS is slightly sharper than the tuning curve of the
called the orientation tuning curve. The response of a cell igiring rate. This finding implies that orientation selectivity in
the maximum at its preferred orientation and falls off as they,q firing rate is tightly correlated with synchronized firings.
stimulus orientation departs from the preferred orientation. e temporal variability of the activity of a neuron or a

The degree of tuning is quantified by the half width at the.qymn can be measured by calculating the autocorrelation
half maximum(HWHM) of the tuning curve. The HWHM is

about 20° for simple cells of the cat visual cor{@2].

We investigate the properties of orientation tuning of cor-
tical cells in our hypercolumn model. A typical example of
the averaged spike trains elicited from individual columns is 200 -
shown in Fig. Za). We obtain the orientation tuning curve of
the firing rate from the averaged spike trains and depict in 150 L
Fig. 2b). The HWHM of the tuning curve is as small as
about 18° and this tuning width agrees well with the experi-
mental observations in the cat visual cortex.

The contrast invariance in orientation tuning is another
characteristic property of the cortical cells in the primary 50 |
visual cortex[23,24], which indicates that the sharpness of
orientation tuning is nearly unchanged for a broad range of 0 - ! L N
stimulus contrast. We also estimate this property in the pro- -90 -60 -30 0 Orieﬁ’g fion ( dio) 90
posed hypercolumn model by changing the values of contrast 9
c in Eq. (4). The tuning curves for different values of the  FIG. 4. The tuning curve for the peak height of power spectrum
stimulus contrast are shown in Fig. 3. We find that all the(PHPS_ The power spectrum was calculated from the averaged
HWHM remain almost the same in spite of the change in thespike trains in Fig. &).

Firing rate (Hz)
7]
o

250 T T T T T

PHPS

100 +
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function from the individual or averaged spike trains. As is

seen in Fig. &) for the population activity, the oscillatory

component remains synchronized. The autocorrelation func-
tion of an individual spike train shows similar oscillations.

The degree of the coherent synchronization between pairs o
neurons or columns can be estimated by the cross correlatiol
by using the individual or averaged spike trains. Figuii® 5
shows the cross correlation of the averaged spike trains be
tween two columns. The cross correlation for the individual
spike train of two neurons shows similar properfisse Figs.
5(c) and Hd)]. We observe the shift of the maximum in the
cross correlation function from delay=0 msec. As the dif-
ference of the preferred orientations of two cells or two col-
umns increases, this time delay increases. The shift of the
peaks in time is of the order of several msec in our study, as

observed in the experimef25] and the model9].

To see how much the intracortical connections determineg
the orientation-selective neuronal responses, we draw thd
contour plots of the maximal firing rate, which is the aver-
aged firing rate of the column with preferred orientation,
6=0°, and the HWHM in the tuning curve in the two-
dimensional parameter space spanned by the excitatory an
inhibitory synaptic coupling strength in Fig. 6. The increase
in the inhibitory coupling strength reduces the maximal fir-
ing rate[see Fig. Ga)]. Interestingly, the increase in the ex-

o ©

citatory coupling strength also reduces the maximal firing § & 2
rate[see Fig. 63)]. It is because the strong excitatory synap- WHmH
tic input during the refractory period delays the time of the
successive action potential generation that is proportional to

the strength of the excitatory couplif@5,16. If we assume
that active neural responses are more effective in signal prahe half width at half maximunfHWHM) in the parameter space
cessing with relatively larger synaptic current transmissionthe functions of excitatory and inhibitory coupling strengths Bor
an appropriate range of the coupling strength for intracorticak 1. The plot on the left denotes the HWHM f&,,= 0.05.

FIG. 5. (a) The autocorrelation
function of the spike train of a
column with preferred orientation
#,=0° and(b) the cross correla-
tion function between the spike
trains of two columns with pre-
ferred orientationd,;=0° and 4,
=25.71°. (c) The cross correla-
tion function between the spike
trains of two cells in the same col-
umn with preferred orientatiofi;
=0° and(d) the cross correlation
function between the spike trains
of two cells in the two columns
with preferred orientatiord;=0°
and 6,=25.71°. The spike trains
are obtained from Fig. 2.

FIG. 6. The contour plots ofa) the maximal firing rate an¢b)
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5 ) =0.05.
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Orientation (deg) Orientation (deg)
connections can be estimated@g,<0.1 andG;,,<0.1. [compare Fig. ) with 7(d)]. If we assume that the visual

We find that the width of the orientation tuning also de- cortex works well with stronger neural response and sharp
pends upon the synaptic coupling strength of intracorticabrientation tuning 7], the values of appropriate parameters
connections as shown in Fig(h. When the excitatory cou- are estimated a&;,,~0.05 andG,,<0.07 from the two
pling strength is strongroughly, G¢,>0.1), the HWHM be-  contour plots in Fig. 6. In these measures we cannot specify
comes larger due to the nonlinear responses of neuronan appropriate range of the excitatory coupling strength.
When the excitatory coupling strength is not so strong We study the situation with strong noise in order to ex-
(roughly, G¢4<0.1), the HWHM is determined by the in- plore how the degree of synchronization depends upon the
hibitory coupling only. The HWHM has one minimum near excitatory coupling strength. The firing rates and PHPS val-
Ginn~0.05 when the inhibitory coupling is varied from ues for the 0° column are calculated for several excitatory
Ginpn=0 to G;,,=0.2. WhenG;,,>0.2, the HWHM de- coupling strengths with the appropriate inhibitory coupling
creases monotonically. The mechanisms for the emergenstrengthG;,,=0.05 in Fig. 8. When the excitatory coupling
of a minimum can be understood by investigating the changstrength increases, the firing rate increases slowly; however,
of the tuning curves in Fig. 7 as a function of the inhibitory the change is small in the weak-coupling conditioB.{
coupling. When the inhibitory coupling increases to 0.05, the<0.1), which implies that the synchronized activities are
tuning curve becomes sharper due to the decrease of itsss perturbed by the strong noise if the excitatory connec-
width by stronger lateral inhibitioficompare Fig. ®) with  tions are strong. In contrast to the firing rate, the PHPS in the
7(b)]. As the inhibitory coupling increases further @,, same condition increases rapidly and there are large fluctua-
=0.2, the maximal firing rate—that is, the peak value in thetions in the PHPS due to strong noise. For stronger coupling
tuning curve—decreases more rapidly than the wjgthm-  (G.,>0.2), the time delay in the generation of a subsequent
pare Fig. Tb) with 7(c)]. As we increase the inhibitory cou- spike, which is induced by strong excitatory current during
pling further to G;,,=0.7, the firing rates of all columns the refractory period, reduces the firing rate and the degree of
decrease uniformly and the HWHM becomes smaller agaiisynchronization. Highly synchronized activities have been

50 T gy 250 T T
'?-i-
Lo B *‘___,_-r \\i\ \. -
405 = \ - 200 t }' . FIG. 8. (a) The firing rates and
¥ / AN (b) the PHPS as a function of ex-
‘g 30} 1 o150t /} { 1 citatory coupling strength. The in-
o < // 3 hibitory coupling strength i$5;,,
E 20t 1 %100} 'Y /./} . =0.05 and strong noise is applied
e e {{ with intensity D=3. The error
10} : 50 | 1 bars come from the standard de-
(a) (b) viation over five trials.
0 L | d) L 1
0.001 0.01 0.1 1 .001 0.01 0.1
Gex Gex
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observed in the primary visual cortex in numerous experi-
ments[8]. The appropriate excitatory coupling is estimated
as one for maximal PHPS in the regime of weak coupling 12.86 [-m——um ol —n i,
(Gex<0.1). In our study, the appropriate synaptic coupling 25.71
strength is estimated to b8,,~0.05 andG;,,~0.05[syn-
aptic currents~O(1) uwA/cm?] from Figs. @b) and 8b),
respectively. At this appropriate parameter range, the synapz 5143
tic current evoked by excitatory and inhibitory connections §
has the same order of magnitude. That is, the excitatory syn®
aptic coupling strengths are balanced with inhibitory synap- 7714
tic coupling strength at the appropriate parameter rdige

T T T T
0.00 d o bk ek ik b olm oad dd o\ ol

PR B Y R ST ST T YT ST T

38.57

on (deg)

64.29

90.00
0 100 200 300 400 500
IV. HYPERCOLUMN MODEL WITH THE MODEL t (msec)
OF CONNOR et al (a)
A kind of neural response to the synaptic current observec 80 . . . . .
in the standard Hodgkin-Huxley neuron is called a type-ll
response; a strong post-synaptic current delays the firing o 6o

the next spike, when this current occurs during the refractory
period, a short region after action potential. Another type of
response is also found; a small excitatory post-synaptic cur-
rent systematically advances the next spike of the neuron
even when it occurs during the refractory period. This type-I
response could be found in an integrate-and-fire neuron an
the model of Connort al, which is one of well-known
conductance-based models with a spiking nati2e,27).

Firing rate (Hz)
P
S

n
(=]
T
1

N 0 L 1 L L L
The study of the dynamical responses and subsequently th 90 60  -30 0 o 30 %0 90
tuning properties in the hypercolumn model with models of rientation (deg)
Connoret al. is an interesting problem, because it helps to (b)

understand how the network properties such as the orienta-
tion tuning may depend on the individual cell property.
A typical example of the averaged spike trains elicited

FIG. 9. (a) The averaged spike trains for individual columns of
the hypercolumn model with the neural equations of Coretaal.
from individual columns is shown in Fig (8 and the orien- and (b) the tuning curve of the average firing rate calc_:ulated from
. . - e . the averaged spike trains {g). These results were obtained for the
tation tuning curve (_)f t_he firing rate is Shown_ in Fight synaptic coupling strengtt@,,=0.05, G;,,=0.05, and weak noise
Ws_: can o_bserve pen_odl_cz_ally clustered sp_lkes_ln the averagegin p=1 andi £=15 wAlcm?. Vo =0 mV andV,,,= —85 mV.
spike trains of the individual columns in Fig(e, even  The synaptic time constant of excitatory,=1 msec and that of
though the model cortical cells receive noisy current. Thennibitory 7,,,=5 msec.
tuning curves in the PHPS have sharp tuning. Interestingly,
this strong synchronization disappears even when the synaglifferent from the case with Hodgkin-Huxley neuron. This
tic time constant of excitatory synapsg,=2 msec, which difference originates from the type-I response property of the
is relatively small. In the case of the model with the model of Connoret al. Interestingly, this phase diagram is
Hodgkin-Huxley neurons, we find the abrupt reduction ofsimilar to one by Somerst al, where integrate-and-fire neu-
synchronization at the larger time constant af,, rons are used. It is due to the fact that the integrate-and-fire
~4.0 msec. This observation implies that the synchronizaneuron is another typical example of neurons with type-I
tion in the hypercolumn model with the model of Connor response. In Fig. 18), the HWHM of the tuning curves
et al.is more sensitive and fragile. The HWHM of the tuning strongly depends upon the inhibitory coupling strength and is
curve in this study shows sharp orientation tuning as in thenearly independent of the excitatory coupling strength if the
hypercolumn model with the Hodgkin-Huxley neuron. The coupling strength is not so stron@¢,<0.1). This is quite
characteristics of tuning curves are not the same: the nonzesimilar to one for the model with the Hodgkin-Huxley neu-
firing rate is not observed at the columns with laige  ron. However, there is no minimum in the phase diagram as
— 6| different from the hypercolumn model with Hodgkin- a function of the inhibitory coupling strength, while the hy-
Huxley neurongcompare Fig. &) with 9(b)]. percolumn model with the Hodgkin-Huxley neuron showed
The contour plots of the maximal firing rate and the one minimum with the appropriate coupling strength. The
HWHM in the two-dimensional parameter space of the exci-coupling strengths with sharp tuning of 18°, as observed in
tatory and inhibitory synaptic coupling strengths are showrtypical experiment$§22], and firing rates of cortical neurons,
in Figs. 1@a) and 1@b). Note that the increase in the inhibi- 40—60 Hz[28], correspond tdG.,~0.03 andG;,,~0.03,
tory coupling strength reduces the maximal firing rate. How-respectively({ 29]. The excitatory synaptic coupling strengths
ever, we find that the increase in the excitatory couplingare balanced with inhibitory synaptic coupling strength at
strength increases the maximal firing rate, which is quitethis parameter rangée].
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tuning in the largeN limit. Likewise, the HWHM of PHPS
as a function ofN in Fig. 11(d) also show sharp tuning and
strong synchronization in the largédimit.

We have also studied the dependence of tuning curves on
the number of columns in a hypercolumn. Here, the total
number of cells in a hypercolumn is fixed. We assume that
the connection strength increases in proportion to the number
of columns in order that each cell have the same total syn-
aptic connection strength. The tuning curves for the proposed
0.001 [ hypercolumn models are shown in Fig. 12, where we used
0.001 0.01 0.1 the same integration time intervalgughly 3 sef The ir-
regularity in the tuning curve gradually increases as the num-
ber of involved columns increases. Thus, there is a lot of
irregularity in the tuning curve of hypercolumn model with
128 columns in Fig. 1@l) because the noisy current effect
cannot be reduced much in the averaged firing rate for four
cells. The overall shape of the tuning curves is similar for all
cases and the values of HWHM are roughly about the same
in spite of the difference in the number of columns. This fact
implies that the tuning property does not depend much on the
number of columns considered but on the hypercolumn
structure and the connection rule. Note that the PHPS value
decreases as the irregularity in the tuning curve increases.
We have also explored a different network model with fixed
lateral excitatory connection strength for the hypercolumn
model with 16, 32, 64, and 128 columns. In this case, we find

Gex that the overall shape of all tuning curves is similar for all
(b) cases and these tuning curves look similar to those in Fig. 12.
In our hypercolumn model, we tried to make it biologi-

FIG. 10. (a) The contour plots of the maximal firing rate afld  cally plausible with a physiological neuron model and corti-
the HWHM in the parameter space of the excitatory and inhibitorysg| column structures. However, we had to make some as-
coupling strengths fob =1. sumptions to simplify the problem. First, our model focuses

V. DISCUSSION only on .the activities of cortical cells, excludiqg_ t.he explicit
description of LGN structures and neural activities of LGN

In this paper, the synaptic events are considered as sterecells. Instead, it is incorporated into our model in the form of
typed waveforms ofa functions. An alternative synaptic the input current from LGN cells. That is, the sum of synap-
equation called a kinetic synapse equation is derived by Degic currents from a large number of LGN cells is described as
texheet al. using a kinetic mode]30], which allows more a simple form of input current, which is assumed to be con-
realistic biophysical representations. Tuning properties andtant with a noisy part. Second, the intracortical networks are
the degree of synchronization with this simple kinetic syn-short-range excitatory and long-range inhibitory. For sim-
apse model also show results similar to those in the hypeplicity, these excitatory and inhibitory connections are as-
column model witha functions. These results imply that sumed to be global for both individual columns and interco-
sharp orientation tuning and strong synchronization are collumnar connections. In a real cortical system, the lateral
sequences of the connection rules of short-range excitatiooonnections have inhomogeneities. For example, the cortical
and long-range inhibition and are not much dependent uponells are not connected globally and the synaptic coupling
the particular model of synaptic interactions. strengths are not identical. The consideration of these inho-

Another important question is the size dependence of thenogeneities in the lateral connections—for example, through
dynamical phenomena and orientation selectivity. In this pathe use of the probabilistic connection rule proposed by
per, several hundreds of neurons are used in the hypercolunBomerset al. [7]—can be one possible way to improve our
model, which is, however, very small compared with themodel. Third, we used a Hodgkin-Huxley neuron, which is a
number of neurons in a real hypercolumn in the cortex. Theparadigm for tonically spiking neurons and much used for
size dependence of the dynamic behavior of the network istudying synchronization phenomena in the cortex. It would
studied as a function of the number of neurddsfixing the  be interesting to build the hypercolumn model with more
size of the total synaptic input curreht,,. The averaged realistic cortical neurons that is based on the experiments on
firing rate and PHPS value of column with=0 increase pyramidal cells and inhibitory cells and study detailed prop-
slowly as a function ofN as in Figs. 14a) and 11b). The erties of orientation selectivity.

HWHM in the tuning curves of firing rates as a function of  In this study, we have built a biologically plausible net-
neuron numberd are presented in Fig. {d. The HWHM  work for a hypercolumn and investigated dynamical re-
do not depend much upoN and exhibit sharp orientation sponses of its columnar activities. In the case of Hubel-

0.1

OOOO0O OO

G inh
0.01 permmeseszzzmmmn
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003 i #=0° as a function of the number
(a) (b) of neuronsN. (¢) The plots of the
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Wiesel modeld 3], the thalamocortical input is assumed to Here, the half width of tuning curves is determined by the
give a main contribution to sharp orientation tuning. In ourcoupling strength of inhibitory synapses. This suggests that
model the input current is broadly tuned with a half width of inhibitory coupling plays a key role in sharpening orientation
45°. However, the tuning curves of the firing rate of corticalselectivity, which is in line with the previous inhibition
cells still show sharp orientation selectivity due to the sharpdominant models for orientation selectivit4,5,31].

ening by intracortical connections. The investigation of tun-  Our model predicts that the synchronization within a col-
ing properties for ensemble-averaged firing activities as aimn and the orientation selectivity are correlated strongly. It
function of synaptic parameters shows that the orientationvould be interesting to measure the synchronization within a
selectivity depends strongly on the inhibitory coupling column through MUAmulti-unit activity) or LFP(local-field
strength, while the synchronization in the spike activities ofpotentia) instead of a single neural activity. The relationship
excitatory cells depends on the excitatory coupling strengthbetween the degree of synchronized activities measured by
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20

20
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90 80 B0 0 80 60 90
Orientation (deg)
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00 60 30 0 30 60 90
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401 J
20| |
(b)
%% %0 =0 0 30 80 90
Orientation (deg)
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20| |
(d)
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FIG. 12. The tuning curves of
averaged firing rates for four dif-
ferent hypercolumns witha) 16
columns, (b) 32 columns,(c) 64
columns, and(d) 128 columns.
The inhibitory coupling strength is
fixed at G;,,=0.02 and the exci-
tatory coupling strengtha Gy
=0.02, (b) G.=0.04, () Gey
=0.08, and(d) G.,=0.16.
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MUA and the tuning curves of firing rate can provide further currents in the model of Conneat al. is the same with the
experimental details for testing and improving our hypercol-Hodgkin-Huxley neuron with different parameters. In the
umn model. model of Connoret al. typical values of the parameters
are [26,27 Vna=55 mV, Vy=-72 mV, V,=-17 mV,
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, . , C=1 uF/cnf. The functionsm.(V), h..(V), andn.(V)
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Funds of the Ministry of Education, Culture, Sports, Sciencecnzz’ and a,=0.1 (V+29.7)41—exg(—V—29.7)/1Q},

and Technology, the Japanese Government. by=4 exf(—V—54.7)/18, a,=0.07 exi(—V—48)/20],
bn=1/1+exd(—V—18)/10]}, a,=0.01 (V—45.7)1

APPENDIX A: HODGKIN-HUXLEY NEURON —exf(-V—45.7)/10}, and b,=0.125 exp(—V

The parametergy,, gk, andg, are the maximum con- —55.7)/8Q. The A current is described in different way:

ductances per unit surface of the axon for the sodium, potas-
sium, and leakage currents, respectivély,,, V¢, andV,
are the corresponding reversal potentials, @nslthe capaci-

Ia=—0ga(V—Vp)A’B,

: ) . dA  A.(V)—A
tance per unit surface. For the squid axon, typical values of — =
the parameters at 6.3°C ak§;,=50 mV, Vy=—-77 mV, dt 7a(V)
V,=-54.5 mV, gy,=120 mS/cm, gx=36 mS/cm, g
=0.3 mS/cm, and C=1 uF/cn?. The functions dB_B.(V)-B
m..(V),h..(V), andn.(V) and the characteristic times in dt (V)

milliseconds,,, 7,, andr,, are given as followsx..(V)
—a/(ag+by), m=1/(a+by) with x=mn,h and a, Where

—0.1 (V+40)1—exd(—V—40)/10},  by,=4 exg(-V ex[(V+94.22/31.84 |3

—65)/19], ap=0.07 exp(—V—65)/2(], b,=141 A.=|0.0761 ,

+exg(~V—35)/10}, a,=0.01 (V+55)/(1—exp(-V 1+ex (V+1.17/28.93

—55)/10)], andb,=0.125 exp(—V—65)/80]. 1158
75=0.3632+ ' :

APPENDIX B: THE MODELS OF CONNOR et al A 1+exd (V+55.96/20.12
The Hodgkin-Huxley equations for a space-clamped squid 1

axon have been modified to approximate voltage clamp data o= 7

from repetitive-firing crustacean walking leg axons. This {1+exd (V+53.3/14.54}

model incorporates, in addition to the sodium and delayed

rectifier potassium currents of the Hodgkin-Huxley neuron, ro=1.24+ 2.678

an A current. The equation for the sodium and potassium 1+exd (V+50)/16.02°
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