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Orientation tuning and synchronization in the hypercolumn model
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The orientation selectivity in the firing rate of neurons is one of the most well-known properties of neurons
in the primary visual cortex. To understand the dynamical mechanism of the orientation tuning, we introduce
a biologically plausible network for a hypercolumn and investigate dynamical responses of its columnar
activities. Numerical simulations show that the spike activities between excitatory cells in the same column
exhibit strong synchronization and sharp orientation selectivity. The tuning curves for the synchronized activi-
ties also show orientation selectivity similar to those for the firing rate. The comparison between the two tuning
curves for the firing rate and the synchronized activities suggests that the orientation selectivity is strongly
correlated with the synchronized activities. We find from the analysis of columnar activities that the orientation
selectivity depends strongly upon the inhibitory coupling strength and the synchronization upon the excitatory
coupling strength. In particular, we find that at appropriate coupling parameters both sharp orientation selec-
tivity and maximal synchronization can be achieved. This suggests the importance of the balance between the
excitatory coupling and the inhibitory coupling in the primary visual cortex for visual information processing.
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I. INTRODUCTION

So far, one of the most important questions regarding n
ral response properties in the primary visual cortex has b
how the neurons become selective to a visual stimulus
entation@1,2#. In other words, this question is how the or
entation selectivity emerges in the visual cortex in spite
weak orientation selectivity of neurons, if any, in the late
geniculate nucleus~LGN!. Several models to address th
question have been proposed; however, the problem stil
mains controversial. In the conceptual model proposed
Hubel and Wiesel@3#, the geniculocortical inputs are as
sumed to give the main contribution to the emergence
orientation selectivity; that is, the cortical neurons obtain o
entation selectivity from the elongated patterns of conve
ing thalamic inputs. An alternative class of models cal
recurrent models has also been proposed by taking into
count the role of intracortical connections. In the recurr
models, the orientation tuning of the membrane poten
evoked by direct inputs from LGN is assumed to be bro
however, this weak tuning is sharpened by the strong in
cortical connections. These recurrent models can be div
into two groups depending on the amount of contributions
intracortical excitatory and inhibitory connections@4–7#.
The role of the inhibitory connections is proposed to be m
important for orientation selectivity in some inhibitory mo
els @4,5# while excitatory connections are considered to
more relevant in other models@6,7#.

An interesting feature of cortical dynamics is the synch
nization in the response of neurons@8#, the understanding o
which is regarded as one of the most important problem
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the visual cortical system. Grayet al. have found stimulus-
dependent synchronization of neuronal responses and l
range synchronization of oscillatory responses in the vis
cortex @8#, which depend on global stimulus properties su
as size and continuity. This observation suggests that a
sory part of the brain detects the objects by synchroniza
of neurons participating in the feature detection and temp
correlation can be exploited to convey information releva
to perceptual grouping. However, until now, little was und
stood about the mechanism underlying this type of synch
nization in connection with the intracortical connections@8#,
and the relationship between the synchronization and sh
orientation tuning@9# remains largely unknown.

Recently, simulations of dynamic neural network mod
have attracted much attention as an efficient research too
understanding the orientation selectivity. The design of
network structures is based on the experimental data
active neuron models with the use of synaptic connectio
so these models give more realistic understanding of ne
systems than conceptual models. A dynamic neural netw
model for orientation selectivity was first proposed by So
ers et al. @7#. They assumed that the visual cortex is co
posed of columns, where the intracortical connections w
determined by the angular difference of the preferred ori
tations. They also paid attention to the importance of
firing rate averaged over all the excitatory cells within a c
umn. The sharp orientation selectivity was observed in
tuning curve of the ensemble-averaged firing rate. Th
however, did not explore the relationship between the ori
tation selectivity and dynamical states such as synchron
tion in the neural activities. After the pioneering work o
©2004 The American Physical Society14-1



o-
re
dy
m
rr
c

er
t
e

d
lls

ie
m

tin
g
a-
n

s
le
re
ra
s
th

ar
t

la
de
lu
n
n
ta
fi
ti

s
h

In
i

ro
ar
an
de
th
ity
.

ne

eu

de
e

s-
nd
-

l-
est-
ec-
n
ns
ort-

mi-
ers

x-
ple
on
ces.
d

52
ns

y

nted
y
-
yra-

on
e

LEE, TANAKA, AND KIM PHYSICAL REVIEW E 69, 011914 ~2004!
Somerset al. @7#, many neuronal network models were pr
posed@9–11#. Hansel and Sompolinsky have studied the
lationship between the orientation selectivity and the
namical phenomena of synchronization in the hypercolu
model. They observed the synchronization in the autoco
lation and cross correlation functions of the cortical cell a
tivities when there is sharp orientation selectivity. Howev
in their model the columnar structure was absent, so i
hard to specify the collective activity of cells in the sam
column and synchronization between them. That is, the
namical properties of averaged neural activity for ce
within a column, which we callcolumnar activity, have not
been investigated yet. Also, the relations between the or
tation selectivity and the dynamical properties of intercolu
nar and intracolumnar neural activities remain unclear.

In the present study, a hypercolumn model represen
one cycle of preferred orientations is constructed usin
network of columns of Hodgkin-Huxley neurons with intr
cortical short-range excitatory and long-range inhibitory co
nections under visual stimulus currents. The tuning curve
the firing rate in the model showed sharp orientation se
tivity with contrast invariance even though LGN inputs a
not tuned sharply. For the dynamical properties of neu
activities, firings of excitatory cells in the individual column
are found to be synchronized and the power spectra of
averaged firings of all the excitatory cells in each column
localized around particular frequencies. The peak heigh
the power spectrum~PHPS!, which is calculated from the
averaged firing activities within a column, and autocorre
tion and cross correlation are introduced to quantify the
gree of synchronization. The PHPS as a function of stimu
orientation also shows sharp orientation selectivity as see
the firing rate, which indicates that the degree of synchro
zation of firings strongly depends upon the stimulus orien
tion. When the tuning properties for ensemble-averaged
ing activities are investigated as a function of synap
parameters, we find that there exist appropriate value
intracortical connection strengths, which result in both tig
orientation tuning and strong synchronization of firings.
terestingly, it is found that the excitatory coupling strength
balanced with the inhibitory coupling strength in the app
priate coupling strength. The overall properties of tuning
found to be robust for a broad class of neuron models
synaptic models. In Sec. II, a simple neural network mo
of the hypercolumn is introduced. In Sec. III, we present
results of numerical simulations on orientation selectiv
with our model. We end with a summary and discussions

II. MODELING A HYPERCOLUMN

The network model composed of 15 columns is desig
as a hypercolumn model as in Fig. 1~a!, where the preferred
orientation varies discretely from290° to 190° with an in-
crement of 12.85°. The network consists of 225 cortical n
rons where 45 neurons are inhibitory cells~20%! and 180
neurons excitatory cells~80%! @12#; each column contained
12 excitatory neurons and 3 inhibitory neurons. The mo
cortical cells either excitatory or inhibitory are given by th
Hodgkin-Huxley~HH! neurons@13#.
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A simple pattern of the intracortical connections is a
sumed in this model to be the short-range excitatory a
long-range inhibitory@see Fig. 1~c!#, as observed in an ana
tomical study of the cortex@14#. In the model, the excitatory
connections are all-to-all inside individual orientation co
umns or intercolumnar connections between the near
neighbor columns. The strength of the intercolumnar conn
tions is 15% of that of the intracolumnar connections. A
inhibitory neuron is connected globally to the other neuro
in the whole networks. The model proposed here has sh
range excitatory and long-range inhibitory connections si
lar to the structure of connections in the model by Som
et al. @7#.

A. Hodgkin-Huxley neurons

We adopt the Hodgkin-Huxley neuron as a model of e
citatory and inhibitory cells because it has served as a sim
and typical paradigm for tonically spiking neurons based
the voltage-dependent nonlinear membrane conductan
The Hodgkin-Huxley neuron model was originally derive
from the dynamical behavior of squid giant axons in 19
@13# and is described by four ordinary differential equatio
with respect to four variablesV, m, n, andh. The membrane
potential Vi of the i th neuron in the network is given b
Kirchhoff’s law of current conservation:

C
dVi

dt
5I ion,i1I E,i1I syn,i1I noise,i , ~1!

FIG. 1. ~a! The preferred orientation and~b! the input stimulus
amplitude. The preferred orientation for each column is represe
by the angle of each bar in~a! and the input stimulus amplitude b
the height of each box in~b!. ~c! The intracolumnar and intercolum
nar lateral connections. The pyramid-shaped figures represent p
midal cells, the circles inhibitory cells. The excitatory connecti
from a pyramidal cell~gray! is represented by solid arrows and th
inhibitory connection from an inhibitory cell~gray! by dashed ar-
rows.
4-2
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ORIENTATION TUNING AND SYNCHRONIZATION IN . . . PHYSICAL REVIEW E69, 011914 ~2004!
where C is the membrane capacitance,I E,i the external
stimulus current,I ion,i the ionic current through ion chan
nels, I syn,i the synaptic current from the excitatory and i
hibitory cells in the columns, andI noise,i the noisy input
current. The voltage-dependent ionic current is the sum
currents through the sodium channel~Na!, the potassium
channel (K), and the leaky current (l ):

I ion,i52gNam
3h~Vi2VNa!2gKn4~Vi2VK!2gl~Vi2Vl !,

~2!

whereg’s with subscriptsNa,K,l are the maximum conduc
tances for individual channels, andV’s are the corresponding
reversal potentials.

The time-varying gate variablesm, h, andn are associated
with activation ofNa channels, inactivation ofNa channels,
and activation ofK channels, respectively, and obey the fo
lowing equation:

tx~V!
dx

dt
5x`~V!2x. ~3!

Herex denotes each of the gate variables, andtx andx` are
the relaxation time and stationary value of the gate varia
respectively. A more detailed description of these parame
can be obtained from the literature@13,15,16# ~see Appendix
A!.

B. Stimulus currents

When the visual stimulus of a bar is presented with
orientation angleu0, the stationary input current to a cell i
the i th column through the geniculo-cortical afferent inpu
is assumed to be a function ofuu i2u0u as I E,i5F(uu i
2u0u), where F(u) is a decreasing function ofu with a
single maximum atu5u0, andu i the preferred orientation o
the cell. For simplicity, we assumed a linearly decreas
function with a half width of 45° as in Fig. 1~b!. This weakly
tuned input current is adopted based on the experime
finding that the tuning profile of the membrane potent
driven only by the LGN input was broad with a half width o
about 45°@17#. Whenu050°, the input current is written by

I E,i5I 0c
u90°2uu i uu

90°
, ~4!

where I 0 is the maximum current for the column withu i
50°, andc the stimulus contrast which takes a value b
tween 0 and 1. The inhibitory cells are assumed to rece
the same input current as the excitatory cells in the sa
column. Here, we assume thatI E,i is proportional to the
stimulus contrastc for simplicity with I 0511 mA/cm2 for the
maximal stimulus contrast.

The synaptic currentI syn,i(t) is typically modeled by the
a function @18#, which characterizes a quick rise and a slo
decay of the post-synaptic potential induced by a spike fr
a presynaptic neuron. That is, the synaptic current is given
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I syn,i~ t !52Gex(
j ,k

a~ t2t j ,k!~Vi2Vex!

2Ginh(
j ,l

a~ t2t j ,l !~Vi2Vinh!, ~5!

with the a function a(t)5(t/t)e2t/t specified by the time
constantt. The maximum synaptic conductances and
synaptic reversal potentials areGex and Vex for the excita-
tory synaptic current andGinh and Vinh for the inhibitory
synaptic currents, respectively. The occurrence timet j ,k ~or
t j ,l) represents thej th spike in thekth ~or l th! presynaptic
excitatory neuron in thel th inhibitory one. The summation is
taken for all the events of action potentials and for all t
presynaptic neurons. The time constant,t, is chosen to be 2
msec for excitatory synapses and 5 msec for inhibitory s
apses. We assume thatVex5245 mV for excitatory syn-
apses andVinh5280 mV for inhibitory synapses with the
resting membrane potentialVrest5265 mV @15,16#.

We employ the correlated noisy current with Ornste
Uhlenbeck~OU! process with the correlation timetn :

tn

dInoise,i

dt
52I noise,i1A2Dj~ t !, ~6!

where j(t) is the Gaussian white noise, andD the noise
intensity. Here, we assume thattn is 2 msec@19#.

C. Peak height of the power spectrum

Suppose thatt i j represents the occurrence time of thej th
spike in thei th neuron; then, the spike trainhi of the i th
neuron is given byhi5( jd(t2t i j ). To characterize the in-
formation processed by the excitatory cells in a column,
adopt the averaged spike train@20,21# h̄5(1/N)( ihi , where
the indexi spans all the excitatory cells in a column, andN
represents the number of excitatory cells in a column. T
averaged spike train shows periodic and clustered spike
tivities in the presence of synchronization, whereas it sho
a random and irregular sequence of spikes in the absenc
synchronization. When the cells show synchronized firin
the power spectrum of the firings is localized around parti
lar frequencies and the peak height is proportional to
degree of synchronization. In practice, this power spectr
is given as the Fourier transformation of the autocorrelat
of the averaged spike train. When there occur oscillations
the synchronized activities in the averaged spike train,
can observe periodic peaks in the autocorrelation funct
The period of oscillations is given by the inverse of the fr
quency around which the power is localized. The degree
synchronization of firings in a column is quantified in o
study by the PHPS of the averaged spike trainh̄(t) @21#.

III. NUMERICAL RESULTS

Orientation selectivity has been intensively investigated
the physiological experiments since the pioneering work
Hubel and Wiesel~see, for example, Das@1# and Sompolin-
sky and Shapley@2#!. The firing rate of a simple excitatory
4-3
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LEE, TANAKA, AND KIM PHYSICAL REVIEW E 69, 011914 ~2004!
cell is measured as a function of the stimulus orientati
called the orientation tuning curve. The response of a ce
the maximum at its preferred orientation and falls off as
stimulus orientation departs from the preferred orientati
The degree of tuning is quantified by the half width at t
half maximum~HWHM! of the tuning curve. The HWHM is
about 20° for simple cells of the cat visual cortex@22#.

We investigate the properties of orientation tuning of c
tical cells in our hypercolumn model. A typical example
the averaged spike trains elicited from individual columns
shown in Fig. 2~a!. We obtain the orientation tuning curve o
the firing rate from the averaged spike trains and depic
Fig. 2~b!. The HWHM of the tuning curve is as small a
about 18° and this tuning width agrees well with the expe
mental observations in the cat visual cortex.

The contrast invariance in orientation tuning is anoth
characteristic property of the cortical cells in the prima
visual cortex@23,24#, which indicates that the sharpness
orientation tuning is nearly unchanged for a broad range
stimulus contrast. We also estimate this property in the p
posed hypercolumn model by changing the values of cont
c in Eq. ~4!. The tuning curves for different values of th
stimulus contrast are shown in Fig. 3. We find that all t
HWHM remain almost the same in spite of the change in

FIG. 2. ~a! The averaged spike trains for individual columns
our hypercolumn model and~b! the tuning curve of the averag
firing rate calculated from the averaged spike trains in~a!. These
results were obtained for the synaptic coupling strengthsGex

50.05,Ginh50.05, and weak noise withD51.
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strength of the forcing amplitude, which indicates that co
trast invariance is achieved as in neuronal responses in
primary visual cortex.

We observe periodically clustered spikes in the avera
spike trains of the individual columns in Fig. 2~a! even
though the model cortical cells receive noisy current. We c
also see in Fig. 2~a! that the periodic structure of synchro
nized firings becomes deteriorated as the preferred orie
tion of the column departs from the stimulus orientatio
When we calculate the power spectrum of the spike train
the column with preferred orientation 0°, it has a sharp pe
with broad background. As the preferred orientation of a c
umn departs from the stimulus orientation, the PHPS
creases without changes in the background level. We d
the tuning curve of the PHPS against the preferred orie
tion in Fig. 4. Interestingly, we observe in this tuning cur
that the PHPS is slightly sharper than the tuning curve of
firing rate. This finding implies that orientation selectivity
the firing rate is tightly correlated with synchronized firing

The temporal variability of the activity of a neuron or
column can be measured by calculating the autocorrela

FIG. 3. The average orientation tuning curves obtained from
network for various stimulus contrastsc between 0.5 and 1.0. The
simulations were performed forGex50.05, Ginh50.05, and weak
noiseD51.

FIG. 4. The tuning curve for the peak height of power spectr
~PHPS!. The power spectrum was calculated from the avera
spike trains in Fig. 2~a!.
4-4



-

s

ORIENTATION TUNING AND SYNCHRONIZATION IN . . . PHYSICAL REVIEW E69, 011914 ~2004!
FIG. 5. ~a! The autocorrelation
function of the spike train of a
column with preferred orientation
u150° and ~b! the cross correla-
tion function between the spike
trains of two columns with pre-
ferred orientationu150° and u2

525.71°. ~c! The cross correla-
tion function between the spike
trains of two cells in the same col
umn with preferred orientationu1

50° and~d! the cross correlation
function between the spike train
of two cells in the two columns
with preferred orientationu150°
and u2525.71°. The spike trains
are obtained from Fig. 2.
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function from the individual or averaged spike trains. As
seen in Fig. 5~a! for the population activity, the oscillatory
component remains synchronized. The autocorrelation fu
tion of an individual spike train shows similar oscillation
The degree of the coherent synchronization between pai
neurons or columns can be estimated by the cross correla
by using the individual or averaged spike trains. Figure 5~b!
shows the cross correlation of the averaged spike trains
tween two columns. The cross correlation for the individu
spike train of two neurons shows similar properties@see Figs.
5~c! and 5~d!#. We observe the shift of the maximum in th
cross correlation function from delayt50 msec. As the dif-
ference of the preferred orientations of two cells or two c
umns increases, this time delay increases. The shift of
peaks in time is of the order of several msec in our study
observed in the experiment@25# and the model@9#.

To see how much the intracortical connections determ
the orientation-selective neuronal responses, we draw
contour plots of the maximal firing rate, which is the ave
aged firing rate of the column with preferred orientatio
u50°, and the HWHM in the tuning curve in the two
dimensional parameter space spanned by the excitatory
inhibitory synaptic coupling strength in Fig. 6. The increa
in the inhibitory coupling strength reduces the maximal
ing rate@see Fig. 6~a!#. Interestingly, the increase in the e
citatory coupling strength also reduces the maximal fir
rate@see Fig. 6~a!#. It is because the strong excitatory syna
tic input during the refractory period delays the time of t
successive action potential generation that is proportiona
the strength of the excitatory coupling@15,16#. If we assume
that active neural responses are more effective in signal
cessing with relatively larger synaptic current transmissi
an appropriate range of the coupling strength for intracort
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FIG. 6. The contour plots of~a! the maximal firing rate and~b!
the half width at half maximum~HWHM! in the parameter spac
the functions of excitatory and inhibitory coupling strengths forD
51. The plot on the left denotes the HWHM forGex50.05.
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FIG. 7. The tuning curves of
averaged firing rates for four dif-
ferent inhibitory coupling
strengths: ~a! Ginh50.005, ~b!
Ginh50.05, ~c! Ginh50.2, and
~d! Ginh50.7. The excitatory cou-
pling strength is fixed atGex

50.05.
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connections can be estimated asGex,0.1 andGinh,0.1.
We find that the width of the orientation tuning also d

pends upon the synaptic coupling strength of intracort
connections as shown in Fig. 6~b!. When the excitatory cou
pling strength is strong~roughly,Gex.0.1), the HWHM be-
comes larger due to the nonlinear responses of neur
When the excitatory coupling strength is not so stro
~roughly, Gex,0.1), the HWHM is determined by the in
hibitory coupling only. The HWHM has one minimum ne
Ginh;0.05 when the inhibitory coupling is varied from
Ginh50 to Ginh50.2. WhenGinh.0.2, the HWHM de-
creases monotonically. The mechanisms for the emerge
of a minimum can be understood by investigating the cha
of the tuning curves in Fig. 7 as a function of the inhibito
coupling. When the inhibitory coupling increases to 0.05,
tuning curve becomes sharper due to the decrease o
width by stronger lateral inhibition@compare Fig. 7~a! with
7~b!#. As the inhibitory coupling increases further toGinh
50.2, the maximal firing rate—that is, the peak value in t
tuning curve—decreases more rapidly than the width@com-
pare Fig. 7~b! with 7~c!#. As we increase the inhibitory cou
pling further to Ginh50.7, the firing rates of all column
decrease uniformly and the HWHM becomes smaller ag
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@compare Fig. 7~c! with 7~d!#. If we assume that the visua
cortex works well with stronger neural response and sh
orientation tuning@7#, the values of appropriate paramete
are estimated asGinh;0.05 andGex,0.07 from the two
contour plots in Fig. 6. In these measures we cannot spe
an appropriate range of the excitatory coupling strength.

We study the situation with strong noise in order to e
plore how the degree of synchronization depends upon
excitatory coupling strength. The firing rates and PHPS v
ues for the 0° column are calculated for several excitat
coupling strengths with the appropriate inhibitory coupli
strengthGinh50.05 in Fig. 8. When the excitatory couplin
strength increases, the firing rate increases slowly; howe
the change is small in the weak-coupling condition (Gex
,0.1), which implies that the synchronized activities a
less perturbed by the strong noise if the excitatory conn
tions are strong. In contrast to the firing rate, the PHPS in
same condition increases rapidly and there are large fluc
tions in the PHPS due to strong noise. For stronger coup
(Gex.0.2), the time delay in the generation of a subsequ
spike, which is induced by strong excitatory current duri
the refractory period, reduces the firing rate and the degre
synchronization. Highly synchronized activities have be
-
-

d

-

FIG. 8. ~a! The firing rates and
~b! the PHPS as a function of ex
citatory coupling strength. The in
hibitory coupling strength isGinh

50.05 and strong noise is applie
with intensity D53. The error
bars come from the standard de
viation over five trials.
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ORIENTATION TUNING AND SYNCHRONIZATION IN . . . PHYSICAL REVIEW E69, 011914 ~2004!
observed in the primary visual cortex in numerous exp
ments@8#. The appropriate excitatory coupling is estimat
as one for maximal PHPS in the regime of weak coupl
(Gex,0.1). In our study, the appropriate synaptic coupli
strength is estimated to beGex;0.05 andGinh;0.05 @syn-
aptic currents;O(1) mA/cm2] from Figs. 6~b! and 8~b!,
respectively. At this appropriate parameter range, the syn
tic current evoked by excitatory and inhibitory connectio
has the same order of magnitude. That is, the excitatory
aptic coupling strengths are balanced with inhibitory syn
tic coupling strength at the appropriate parameter range@7#.

IV. HYPERCOLUMN MODEL WITH THE MODEL
OF CONNOR et al

A kind of neural response to the synaptic current obser
in the standard Hodgkin-Huxley neuron is called a type
response; a strong post-synaptic current delays the firin
the next spike, when this current occurs during the refract
period, a short region after action potential. Another type
response is also found; a small excitatory post-synaptic
rent systematically advances the next spike of the neu
even when it occurs during the refractory period. This typ
response could be found in an integrate-and-fire neuron
the model of Connoret al., which is one of well-known
conductance-based models with a spiking nature@26,27#.
The study of the dynamical responses and subsequently
tuning properties in the hypercolumn model with models
Connoret al. is an interesting problem, because it helps
understand how the network properties such as the orie
tion tuning may depend on the individual cell property.

A typical example of the averaged spike trains elicit
from individual columns is shown in Fig. 9~a! and the orien-
tation tuning curve of the firing rate is shown in Fig. 9~b!.
We can observe periodically clustered spikes in the avera
spike trains of the individual columns in Fig. 9~a!, even
though the model cortical cells receive noisy current. T
tuning curves in the PHPS have sharp tuning. Interestin
this strong synchronization disappears even when the sy
tic time constant of excitatory synapsetex52 msec, which
is relatively small. In the case of the model with th
Hodgkin-Huxley neurons, we find the abrupt reduction
synchronization at the larger time constant oftex
;4.0 msec. This observation implies that the synchron
tion in the hypercolumn model with the model of Conn
et al. is more sensitive and fragile. The HWHM of the tunin
curve in this study shows sharp orientation tuning as in
hypercolumn model with the Hodgkin-Huxley neuron. T
characteristics of tuning curves are not the same: the non
firing rate is not observed at the columns with largeuu
2u0u different from the hypercolumn model with Hodgkin
Huxley neurons@compare Fig. 2~b! with 9~b!#.

The contour plots of the maximal firing rate and t
HWHM in the two-dimensional parameter space of the ex
tatory and inhibitory synaptic coupling strengths are sho
in Figs. 10~a! and 10~b!. Note that the increase in the inhib
tory coupling strength reduces the maximal firing rate. Ho
ever, we find that the increase in the excitatory coupl
strength increases the maximal firing rate, which is qu
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different from the case with Hodgkin-Huxley neuron. Th
difference originates from the type-I response property of
model of Connoret al. Interestingly, this phase diagram
similar to one by Somerset al., where integrate-and-fire neu
rons are used. It is due to the fact that the integrate-and
neuron is another typical example of neurons with typ
response. In Fig. 10~a!, the HWHM of the tuning curves
strongly depends upon the inhibitory coupling strength an
nearly independent of the excitatory coupling strength if
coupling strength is not so strong (Gex,0.1). This is quite
similar to one for the model with the Hodgkin-Huxley ne
ron. However, there is no minimum in the phase diagram
a function of the inhibitory coupling strength, while the h
percolumn model with the Hodgkin-Huxley neuron show
one minimum with the appropriate coupling strength. T
coupling strengths with sharp tuning of 18°, as observed
typical experiments@22#, and firing rates of cortical neurons
40–60 Hz @28#, correspond toGex;0.03 andGinh;0.03,
respectively@29#. The excitatory synaptic coupling strength
are balanced with inhibitory synaptic coupling strength
this parameter range@7#.

FIG. 9. ~a! The averaged spike trains for individual columns
the hypercolumn model with the neural equations of Connoret al.
and ~b! the tuning curve of the average firing rate calculated fro
the averaged spike trains in~a!. These results were obtained for th
synaptic coupling strengthsGex50.05,Ginh50.05, and weak noise
with D51 andI E515 mA/cm2. Vex50 mV andVinh5285 mV.
The synaptic time constant of excitatorytex51 msec and that of
inhibitory t inh55 msec.
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V. DISCUSSION

In this paper, the synaptic events are considered as ste
typed waveforms ofa functions. An alternative synapti
equation called a kinetic synapse equation is derived by D
texheet al. using a kinetic model@30#, which allows more
realistic biophysical representations. Tuning properties
the degree of synchronization with this simple kinetic sy
apse model also show results similar to those in the hy
column model witha functions. These results imply tha
sharp orientation tuning and strong synchronization are c
sequences of the connection rules of short-range excita
and long-range inhibition and are not much dependent u
the particular model of synaptic interactions.

Another important question is the size dependence of
dynamical phenomena and orientation selectivity. In this
per, several hundreds of neurons are used in the hyperco
model, which is, however, very small compared with t
number of neurons in a real hypercolumn in the cortex. T
size dependence of the dynamic behavior of the networ
studied as a function of the number of neurons,N, fixing the
size of the total synaptic input currentI syn. The averaged
firing rate and PHPS value of column withu50 increase
slowly as a function ofN as in Figs. 11~a! and 11~b!. The
HWHM in the tuning curves of firing rates as a function
neuron numbersN are presented in Fig. 11~c!. The HWHM
do not depend much uponN and exhibit sharp orientation

FIG. 10. ~a! The contour plots of the maximal firing rate and~b!
the HWHM in the parameter space of the excitatory and inhibit
coupling strengths forD51.
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tuning in the large-N limit. Likewise, the HWHM of PHPS
as a function ofN in Fig. 11~d! also show sharp tuning an
strong synchronization in the large-N limit.

We have also studied the dependence of tuning curve
the number of columns in a hypercolumn. Here, the to
number of cells in a hypercolumn is fixed. We assume t
the connection strength increases in proportion to the num
of columns in order that each cell have the same total s
aptic connection strength. The tuning curves for the propo
hypercolumn models are shown in Fig. 12, where we u
the same integration time intervals~roughly 3 sec!. The ir-
regularity in the tuning curve gradually increases as the nu
ber of involved columns increases. Thus, there is a lot
irregularity in the tuning curve of hypercolumn model wi
128 columns in Fig. 12~d! because the noisy current effe
cannot be reduced much in the averaged firing rate for f
cells. The overall shape of the tuning curves is similar for
cases and the values of HWHM are roughly about the sa
in spite of the difference in the number of columns. This fa
implies that the tuning property does not depend much on
number of columns considered but on the hypercolu
structure and the connection rule. Note that the PHPS va
decreases as the irregularity in the tuning curve increa
We have also explored a different network model with fix
lateral excitatory connection strength for the hypercolu
model with 16, 32, 64, and 128 columns. In this case, we fi
that the overall shape of all tuning curves is similar for
cases and these tuning curves look similar to those in Fig.

In our hypercolumn model, we tried to make it biolog
cally plausible with a physiological neuron model and cor
cal column structures. However, we had to make some
sumptions to simplify the problem. First, our model focus
only on the activities of cortical cells, excluding the explic
description of LGN structures and neural activities of LG
cells. Instead, it is incorporated into our model in the form
the input current from LGN cells. That is, the sum of syna
tic currents from a large number of LGN cells is described
a simple form of input current, which is assumed to be co
stant with a noisy part. Second, the intracortical networks
short-range excitatory and long-range inhibitory. For si
plicity, these excitatory and inhibitory connections are a
sumed to be global for both individual columns and interc
lumnar connections. In a real cortical system, the late
connections have inhomogeneities. For example, the cor
cells are not connected globally and the synaptic coup
strengths are not identical. The consideration of these in
mogeneities in the lateral connections—for example, throu
the use of the probabilistic connection rule proposed
Somerset al. @7#—can be one possible way to improve o
model. Third, we used a Hodgkin-Huxley neuron, which is
paradigm for tonically spiking neurons and much used
studying synchronization phenomena in the cortex. It wo
be interesting to build the hypercolumn model with mo
realistic cortical neurons that is based on the experiments
pyramidal cells and inhibitory cells and study detailed pro
erties of orientation selectivity.

In this study, we have built a biologically plausible ne
work for a hypercolumn and investigated dynamical
sponses of its columnar activities. In the case of Hub

y

4-8
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FIG. 11. ~a! The plots of the
maximal firing rate and~b! maxi-
mal PHPS of the column with
u50° as a function of the numbe
of neuronsN. ~c! The plots of the
HWHM of the firing rate and~d!
HWHM of PHPS as a function
of the number of neuronsN.
Here, we studiedN575,150,225,
450,900,1800, respectively. Thes
results were obtained for the
synaptic coupling strengthsGex

50.05,Ginh50.05, and weak
noise with D51 and I E

511 mA/cm2.
to
u
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Wiesel models@3#, the thalamocortical input is assumed
give a main contribution to sharp orientation tuning. In o
model the input current is broadly tuned with a half width
45°. However, the tuning curves of the firing rate of cortic
cells still show sharp orientation selectivity due to the sha
ening by intracortical connections. The investigation of tu
ing properties for ensemble-averaged firing activities a
function of synaptic parameters shows that the orienta
selectivity depends strongly on the inhibitory couplin
strength, while the synchronization in the spike activities
excitatory cells depends on the excitatory coupling stren
01191
r

l
-
-
a
n

f
h.

Here, the half width of tuning curves is determined by t
coupling strength of inhibitory synapses. This suggests
inhibitory coupling plays a key role in sharpening orientati
selectivity, which is in line with the previous inhibition
dominant models for orientation selectivity@4,5,31#.

Our model predicts that the synchronization within a c
umn and the orientation selectivity are correlated strongly
would be interesting to measure the synchronization withi
column through MUA~multi-unit activity! or LFP~local-field
potential! instead of a single neural activity. The relationsh
between the degree of synchronized activities measured
f
FIG. 12. The tuning curves o
averaged firing rates for four dif-
ferent hypercolumns with~a! 16
columns, ~b! 32 columns,~c! 64
columns, and~d! 128 columns.
The inhibitory coupling strength is
fixed at Ginh50.02 and the exci-
tatory coupling strength~a! Gex

50.02, ~b! Gex50.04, ~c! Gex

50.08, and~d! Gex50.16.
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LEE, TANAKA, AND KIM PHYSICAL REVIEW E 69, 011914 ~2004!
MUA and the tuning curves of firing rate can provide furth
experimental details for testing and improving our hyperc
umn model.
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APPENDIX A: HODGKIN-HUXLEY NEURON

The parametersgNa , gK , andgl are the maximum con
ductances per unit surface of the axon for the sodium, po
sium, and leakage currents, respectively,VNa , VK , and Vl
are the corresponding reversal potentials, andC is the capaci-
tance per unit surface. For the squid axon, typical value
the parameters at 6.3 °C areVNa550 mV, VK5277 mV,
Vl5254.5 mV, gNa5120 mS/cm2, gK536 mS/cm2, gl
50.3 mS/cm2, and C51 mF/cm2. The functions
m`(V),h`(V), and n`(V) and the characteristic times i
milliseconds,tm, tn , and th , are given as follows:x`(V)
5ax /(ax1bx), tx51/(ax1bx) with x5m,n,h and am
50.1 (V140)/$12exp@(2V240)/10#%, bm54 exp@(2V
265)/18#, ah50.07 exp@(2V265)/20#, bh51/$1
1exp@(2V235)/10#%, an50.01 (V155)/(12exp@(2V
255)/10)#, andbn50.125 exp@(2V265)/80#.

APPENDIX B: THE MODELS OF CONNOR et al

The Hodgkin-Huxley equations for a space-clamped sq
axon have been modified to approximate voltage clamp d
from repetitive-firing crustacean walking leg axons. Th
model incorporates, in addition to the sodium and dela
rectifier potassium currents of the Hodgkin-Huxley neuro
an A current. The equation for the sodium and potassi
es

l.

i.
l.
,

01191
-

n
e

s-

of

id
ta

d
,

currents in the model of Connoret al. is the same with the
Hodgkin-Huxley neuron with different parameters. In th
model of Connoret al. typical values of the parameter
are @26,27# VNa555 mV, VK5272 mV, Vl5217 mV,
gNa5120 mS/cm2, gK520 mS/cm2, gl50.3 mS/cm2, and
C51 mF/cm2. The functionsm`(V), h`(V), and n`(V)
and the characteristic times in milliseconds,tm, tn ,
and th , are given as follows: x`(V)5ax /(ax1bx),
tx5cx/3.8(ax1bx) with x5m,n,h and cm5ch51 and
cn52, and am50.1 (V129.7)/$12exp@(2V229.7)/10#%,
bm54 exp@(2V254.7)/18#, ah50.07 exp@(2V248)/20#,
bh51/$11exp@(2V218)/10#%, an50.01 (V245.7)/$1
2exp@(2V245.7)/10#%, and bn50.125 exp@(2V
255.7)/80#. TheA current is described in different way:

I A52gA~V2VA!A3B,

dA

dt
5

A`~V!2A

tA~V!
,

dB

dt
5

B`~V!2B

tB~V!
,

where

A`5F0.0761
exp@~V194.22!/31.84#

11exp@~V11.17!/28.93# D
1/3

,

tA50.36321
1.158

11exp@~V155.96!/20.12#
,

B`5
1

$11exp@~V153.3!/14.54#%4
,

tB51.241
2.678

11exp@~V150!/16.02#
.

.

J.

l.
@1# A. Das, Neuron16, 477 ~1996!.
@2# H. Sompolinsky and R. Shapley, Curr. Opin. Neurobiol.7, 514

~1997!.
@3# D.H. Hubel and T.N. Wiesel, J. Physiol.~London! 160, 106

~1962!.
@4# A.M. Sillito, J. Physiol.~London! 289, 33 ~1979!; A.M. Sillito,

J.A. Kemp, and N. Berardi, Brain Res.194, 517 ~1980!.
@5# T. Tsumoto, W. Eckart, and O.D. Creutzfeldt, Exp. Brain R

34, 351 ~1979!.
@6# R. Douglas, K.A.C. Martin, and D. Whitteridge, J. Physio

~London! 440, 659 ~1991!.
@7# D.C. Somers, S.B. Nelson, and M. Sur, J. Neurosci.15, 5448

~1995!.
@8# C.M. Gray, P. Ko¨nig, A.K. Engel, and W. Singer, Nature~Lon-

don! 338, 334 ~1989!; C. Gray and W. Singer, Soc. Neurosc
Abstracts13, 404 ~1987!; C. Gray and W. Singer, Proc. Nat
Acad. Sci. U.S.A.86, 1698~1989!; B. Jagadeesh, C.M. Gray
and D. Ferster, Science257, 552 ~1992!.
.

@9# D. Hansel and H. Sompolinsky, J. Comput. Neurosci.3, 7
~1996!.

@10# T.W. Troyer, A.E. Krukowski, N.J. Priebe, and K.D. Miller, J
Neurosci.18, 5908~1998!.

@11# M.C. Pugh, D.L. Ringach, R. Shapley, and M.J. Shelley,
Comput. Neurosci.8, 143 ~2000!.

@12# P.L.A. Gabbott and P. Somogyi, Exp. Brain Res.61, 323
~1986!.

@13# A.L. Hodgkin and A.F. Huxley, J. Physiol.~London! 117, 500
~1952!.

@14# J.S. Lund, Q. Wu, and J.B. Levitt,The Handbook of Brain
Theory and Neural Networks, edited by M.A. Arbib ~MIT
Press, Cambridge, MA, 1995!, pp. 1016–1021.

@15# D. Hansel, G. Mato, and C. Meunier, Europhys. Lett.23, 367
~1993!.

@16# S. Lee, S. Kim, and H. Kook, Int. J. Bifurcation Chaos App
Sci. Eng.7, 889 ~1997!.

@17# D. Ferster, C. Sooyoung, and H. Wheat, Nature~London! 380,
249 ~1996!.
4-10



tt.

an

ra

r

ut.

ORIENTATION TUNING AND SYNCHRONIZATION IN . . . PHYSICAL REVIEW E69, 011914 ~2004!
@18# J.J.B. Jack, D. Noble, and R.W. Tsien,Electrical Current Flow
in Excitable Cells~Clarendon, Oxford, 1975!.

@19# S. Lee, A. Neiman, and S. Kim, Phys. Rev. E57, 3292~1998!.
@20# M. Tsodyks, I. Mitkov, and H. Sompolinsky, Phys. Rev. Le

71, 1280~1993!.
@21# W. Rappel and A. Karma, Phys. Rev. Lett.77, 3256~1996!.
@22# G.A. Orban,Neuronal Operations in the Visual Cortex~MIT

Press, Cambridge, MA, 1984!.
@23# G. Sclar and R. Freeman, Exp. Brain Res.46, 457 ~1982!.
@24# B. Skottun, A. Bradley, G. Sclar, I. Ohzawa, and R. Freem

J. Neurophysiol.57, 773 ~1987!.
@25# P. König, A.K. Engel, P.R. Roelfsema, and W. Singer, Neu

Comput.7, 469 ~1995!.
01191
,

l

@26# J.A. Connor, D. Walter, and R. McKown, Biophys. J.18, 81
~1977!.

@27# D. Hansel, G. Mato, and C. Meunier, Neural Comput.7, 307
~1995!.

@28# C.M. Gray, A.K. Engel, P. Ko¨nig, and W. Singer, inNonlinear
Dynamics and Neuronal Networks, edited by H.G. Schuste
~VCH, New York, 1991!, pp. 27–55.

@29# S. Lee and S. Kim, Phys. Rev. E60, 826 ~1999!.
@30# A. Destexhe, Z.F. Mainen, and T.J. Sejnowski, Neural Comp

6, 14 ~1994!.
@31# F. Wörgötter, inCerebral Cortex, edited by P. Uliniski~Kluwer

Academic/Plenum, New York, 1999!, pp. 201–249.
4-11


